Race Track Principle

Learning goal: a simple, almost obvious, yet very powerful consequence of the MVT

Suppose \(f(x) \) and \(g(x) \) are two functions and \(f(a) = g(a) \). Suppose further that \(f'(x) \geq g'(x) \). Then for all \(x > a \) we have that \(f(x) \geq g(x) \) (it is equally true if both inequalities are strict). Prosaically, if two horses are tied at point \(a \), and horse 1 is always going at least as fast as horse 2, then horse 1 will always be ahead of horse 2 after \(a \).

Example: (Hughes-Hallett section 3.10, #14) show that for all \(x > 0 \), then \(\sin(x) < x \). Well, by the racetrack principle, \(\sin(0) = 0 \), so the two functions \(f(x) = x \) and \(g(x) = \sin(x) \) are equal at \(a = 0 \). Now \(f'(x) = 1 \), while \(g'(x) = \cos(x) \leq 1 \). So \(f'(x) \geq g'(x) \) for \(x > 0 \), and racetrack tells us that \(\sin(x) \leq x \) when \(x > 0 \). To be precise, \(g'(x) < 1 \) for \(x \) just bigger than zero, so we can make the inequality strict.

Proof of the racetrack principle: Let \(h(x) = f(x) - g(x) \). Then \(h(0) = 0 \), and \(h'(x) = f'(x) - g'(x) \) is greater than (or equal to) zero. By the increasing function theorem, \(h(x) \) is increasing (non-decreasing), so for \(x > 0 \), \(h(x) > 0 \) (\(\geq 0 \)). So \(f \) is bigger than \(g \).

The principle can be applied in reverse (“going back in time”) for two horses that finish at the same time. Then the slower one must have been ahead.

Practice Problems: (Hughes-Hallett section 3.10) 13, 15, 19, 20, 22, (26 – 28)*