Quick Review of Complex Numbers

Learning goals: students recall basic facts about complex numbers

Let’s review the basic facts of complex numbers.

- The complex numbers are expressions of the form \(a + bi \) with \(i^2 = -1 \)
- Adding is easy: \((a + bi) + (c + di) = (a + c) + (b + d)i\)
- Multiplying is distributive: \((a + bi)(c + di) = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i\)
- Complex conjugate: if \(z = a + bi \), then \(\bar{z} = a - bi \)
 - \(z + \bar{z} = 2a \) is always real; \(z - \bar{z} = 2bi \) is always purely imaginary
 - \(z \bar{z} = a^2 + b^2 \) is always nonnegative real, positive of \(z \neq 0 \), and is the square of the modulus of \(z \), \(|z| \)
 - Division can now be accomplished by \(z / w = z\bar{w} / w\bar{w} \), and since the denominator is real, it is easy to divide by it
 - Conjugation commutes with arithmetic: \(\overline{a + b} = \overline{a} + \overline{b}, \overline{ab} = \overline{a}\overline{b} \)
- Every complex number can be written in polar form, \(z = r \text{cis}(\theta) = r \cos(\theta) + ir \sin(\theta) \)
 - If \(z_1 = r_1 \text{cis}(\theta_1) \) and \(z_2 = r_2 \text{cis}(\theta_2) \), then \(z_1z_2 = r_1r_2 \text{cis}(\theta_1 + \theta_2) \) and \(\bar{z} = r \text{cis}(-\theta) \)
- It is often more to-the-point to write \(e^{i\theta} \) instead of \(\text{cis}(\theta) \)
- We can thus quickly take powers and roots: \(z^n = r^n e^{in\theta} \) and an \(n \)th root of \(z \) is \(r^{1/n} e^{i\theta/n} \)
- Especially important is the fact that \(e^{2\pi i} = 1 \)
- We can use this to find the \(n \)th roots of unity: if \(w = e^{2\pi i/n} \), then \(w, w^2, w^3, \ldots, w^n \) are the \(n \) \(n \)th roots of unity