Chapter 6 Problem Set

Advanced Physics

1. What happens to the kinetic energy in an inelastic collision?
2. What happens to conservation of momentum when a clay ball is thrown against a white board and it sticks?
3. Explain the following using momentum: ninja balls, water rocket, Estes rocket, methanol cannon.
4. What source of error do you now see in the launcher lab from last chapter?
5. Calculate the momentum of the following:

* An electron moving at $2.55 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
* A proton moving at $5.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$.
* A 15.0 g bullet moving at $300.0 \mathrm{~m} / \mathrm{s}$.
* A 75.0 kg sprinter moving at $10.0 \mathrm{~m} / \mathrm{s}$.
* The earth.

6. A pitcher claims to have thrown a .145 kg baseball with the same momentum as a 3.00 g bullet traveling at $1.50 \times 10^{3} \mathrm{~m} / \mathrm{s}$. What is the baseballs speed? What is the KE of both?
7. Using the graph below find the impulse on a 1.5 kg object from 0 to $3.0 \mathrm{~s}, 0-5.0 \mathrm{~s}$, the speed at 3.0 s , the speed at 5.0 s .

8. A 730n boy from O1 is cutting across the pond in January, trips at the edge and slides out to the middle. He stands up but can get no traction. In an act of sheer desperation throws his 1.2 kg Advanced Physics book at $5.0 \mathrm{~m} / \mathrm{s}$ toward the hex. If he is only 5.0 m from land, how long will it take for him to get off the ice?
9. Two students from 04 are ice skating on the NO pond. The 65.0 kg girl going $2.50 \mathrm{~m} / \mathrm{s}$ throws a .0450 kg snowball with a velocity of $30.0 \mathrm{~m} / \mathrm{s}$ east and hits the stationary 60.0 kg boy. What is each students velocity after the boy catches the snowball?
10. Three train cars each with a mass of $2.00 \times 10^{4} \mathrm{~kg}$ are on the same track. Two are at rest and connected. The third is rolled into the two at $3.00 \mathrm{~m} / \mathrm{s}$. What is the loss in KE and where did it go?
11. A .15 kg ball is tossed so it reaches its peak 10.0 m above a man with a gun. He shoots the ball at the peak of its flight with a .030 kg bullet moving with an initial muzzle velocity of $200 \mathrm{~m} / \mathrm{s}$. If the bullet lodges in the ball, how much higher will the two go?
12. The IMSA Titan football team is defending its unblemished undeleted record. A 90.0 kg Titan running $5.0 \mathrm{~m} / \mathrm{s}$ east tackles a 95.0 kg opponent going $3.0 \mathrm{~m} / \mathrm{s}$ north. What is the resultant velocity of the two? How much energy is lost?
13. A student is shooting pool in the union. She shoots the cue ball at $5.00 \mathrm{~m} / \mathrm{s}$ at the 8 ball. After the collision the cue ball has a velocity of $4.33 \mathrm{~m} / \mathrm{s} 30.0^{\circ}$ relative to the line it came in on. Find the velocity of the second ball. Was the collision elastic?
