Chapter 5 Problem Set

Advanced Physics

1. If two evenly matched teams are competing in a tug-of-war contest. Is work done anywhere in the system?
2. A frictionless slide is installed at the playground by ' 02 . It is flexible and can be changed into different shapes. How will the velocity change of the students at the bottom of the slide if a large bump is placed in the middle?... a loop is placed in the middle?
3. If a student in '05B second floor buys a 42 " plasma TV that has a mass of 20.0 kg . The student finds it does not fit up the stairs and has to tie a rope around it and raise it up in the commons with total work of 600.0 J . How high is the second floor?
4. A student goes to Walgreens and pushes a cart down the aisle with a 35 N force at 20.0° down from the horizontal. How much work does she do in a 50.0 m stretch from the back of the store to the check-out?
5. A 2.50 kg block is pushed 2.20 m along a frictionless table by constant force of 16.0 n acting 25.0° below the horizontal. Determine the work done by the applied force, the normal force, the force of gravity and the net force on the block.
6. A 700.0n student does a pull up in wellness class with a force of 355 n from each arm. The distance the student's center of gravity rises is .250 m . What is the students velocity at the top?
7. An IMSA Titan baseball player throws a .150 kg ball at a 30.0° from the ground toward home plate with a velocity of $40.0 \mathrm{~m} / \mathrm{s}$. What is the kinetic energy at the peak of the flight of the ball?
8. A .250 kg pendulum bob with a 2.00 m string is raised to 25.0° from the vertical. If the bob is released what will it's velocity be at the lowest point?
9. A 50.0 kg student is sledding down the hill by the hex on a cafeteria tray. If the student's velocity is $9.50 \mathrm{~m} / \mathrm{s}$, how high is the hill? (Assume no friction.)
10. A toy gun fires a .020 kg marble 20.0 m vertically into the air by compressing a spring .120 m . What is the velocity of the marble as it just leaves the spring. (The 20.0 m includes the .120 m compression.)
11. A 1500.0 kg race car reaches $10.0 \mathrm{~m} / \mathrm{s}$ in 3.0 s from a standing start. Find the work done by the car and the power the car exhibited in watts and horsepower.
